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Outline for Today
● Recap from Last Time

● Where are we, again?
● Why Languages and Strings?

● We’ve been using languages to model problems. 
Why?

● Universal Machines
● A single computer that can compute anything 

computable anywhere.
● Self-Referential Software

● Programs that compute on themselves.



  

Recap from Last Time



  

The Church-Turing Thesis claims that

every feasible method of computation
is either equivalent to or weaker than

a Turing machine.

“This is not a theorem – it is a
falsifiable scientific hypothesis.
And it has been thoroughly
tested!”

- Ryan Williams
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Very Important Terminology
● Let M be a Turing machine.
● M accepts a string w if it returns true on w.
● M rejects a string w if it returns false on w.
● M loops infinitely (or just loops) on a string w if when run on w 

it neither returns true nor returns false.
● M does not accept w if it either rejects w or loops on w.
● M does not reject w w if it either accepts w or loops on w.
● M halts on w if it accepts w or rejects w.

Accept
Loop

Reject
does not accept                                     

does not reject                               

halts



  

● A TM M is called a recognizer for a language L over Σ if the 
following statement is true:

∀w ∈ Σ*. (w ∈ L  ↔  M accepts w)
● A language is recognizable when there is a recognizer for it.

Recognizers and Recognizability

Which of these statements are true for all choices of
TM M, string w, and language L?

(1)   If M recognizes L and M rejects w, then w ∉ L.
(2)   If M recognizes L and w ∉ L, then M rejects w.
(3)   If M loops on w and w ∈ L, then M does not recognize L.
(4)   If M loops on w and w ∈ L, then L is not recognizable.

Answer at https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

Deciders and Decidability
● A TM M is called a decider for a language L over Σ if the 

following statements are true:
∀w ∈ Σ*. M halts on w.

∀w ∈ Σ*. (w ∈ L  ↔  M accepts w)
● A language is decidable when there is a decider for it.

Which of these statements are true for all choices of
TM M, string w, and language L?

(1)   If M decides L and M rejects w, then w ∉ L.
(2)   If M decides L and w ∉ L, then M rejects w.
(3)   If M loops on w and w ∈ L, then M does not decide L.
(4)   If M loops on w and w ∈ L, then L is not decidable.

Answer at https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

R and RE Languages
● The class R consists of all decidable 

languages.
● The class RE consists of all recognizable 

languages.
● By definition, we know R ⊆ RE.
● Key Question: Does R = RE?



  

New Stuff!



  

Strings, Languages, and Encodings



  

What problems can we solve with a computer?

What is a 
“computer?”



  

What problems can we solve with a computer?

What does 
“solve” 
mean?



  

What problems can we solve with a computer?

What is a 
“problem?”



  

Decision Problems
● A decision problem is a problem with a 

yes-or-no answer.
● For example:

● “Given integers x, y, and z, is x + y = z?” is a 
decision problem.

● “Given integers x and y, what is x + y?” is not 
a decision problem.

● DFAs, NFAs, and TMs solve decision 
problems: they get an input and produce a 
yes/no output.



  

A Model for Solving Problems

Yep

Nah

Computational
Device

input
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A Model for Solving Problems

Yep

Nah

Turing Machine
input

(accept)

(reject)

bool someFunctionName(string input) {

    // … do something …

}



  

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(accept)

(reject)

bool isAnBn(string input) {

    // … do something …

}



  

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(accept)

(reject)

bool isPalindrome(string input) {

    // … do something …

}



  

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(accept)

(reject)

bool isBipartite(Graph G) {

    // … do something …

}

How does this
match our model?



  

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(accept)

(reject)

bool containsCat(Picture P) {

    // … do something …

}

How does this
match our model?



  

Humbling Thought:
Everything on your computer is a 

string over {0, 1}.



  

Strings and Objects
● Think about how 

my computer 
encodes the image 
on the right.

● Internally, it's just 
a series of zeros 
and ones sitting on 
my hard drive.



  

Strings and Objects
● A different sequence 

of 0s and 1s gives rise 
to the image on the 
right.

● Every image can be 
encoded as a 
sequence of 0s and 1s, 
though not all 
sequences of 0s and 1s 
correspond to images.



  

Object Encodings
● If Obj is some mathematical object that is discrete and 

finite, then we’ll use the notation ⟨Obj⟩ to refer to some 
way of encoding that object as a string.

● Think of ⟨Obj⟩ like a file on disk – it encodes some high-
level object as a series of characters.
Key idea: If you want to have a TM compute something 
about Obj, you can provide the string ⟨Obj⟩ as input to that 
Turing machine.
A few remarks about encodings:

We don't care how we encode the object, just that we can.
The particular choice of alphabet isn't important. Given any 
alphabet, we can always find a way of encoding things.
We'll assume we can perform “reasonable” operations on 
encoded objects.

⟨ ⟩ = 110111001011…110



  

Object Encodings
● If Obj is some mathematical object that is discrete and 

finite, then we’ll use the notation ⟨Obj⟩ to refer to some 
way of encoding that object as a string.

● Think of ⟨Obj⟩ like a file on disk – it encodes some high-
level object as a series of characters.
Key idea: If you want to have a TM compute something 
about Obj, you can provide the string ⟨Obj⟩ as input to that 
Turing machine.
A few remarks about encodings:

We don't care how we encode the object, just that we can.
The particular choice of alphabet isn't important. Given any 
alphabet, we can always find a way of encoding things.
We'll assume we can perform “reasonable” operations on 
encoded objects.

⟨ ⟩ = 001101010001…001



  

Object Encodings
● For the purposes of what we’re going to be doing, 

we aren’t going to worry about exactly how objects 
are encoded.

● For example, we can say ⟨137⟩ to mean “some 
encoding of 137” without worrying about how it’s 
encoded.
● Analogy: do you need to know how numbers are 

represented in Python to be a Python programmer? 
That’s more of a CS107 question.

● We’ll assume, whenever we’re dealing with 
encodings, that some Smart, Attractive, Witty 
person has figured out an encoding system for us 
and that we’re using that encoding system.



  

Object Encodings
● Object encodings let us define languages 

like these:
● { ⟨n⟩ | n ∈ ℕ and n is even }
● { ⟨n⟩ | n ∈ ℕ and the Hailstone sequence 

           terminates for n }
● { ⟨G⟩ | G is a graph and G is bipartite }

● We can focus more on what property of an 
object we’re checking for rather than how 
the object is represented as a string.
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bool containsCat(Picture P) {

    // … do something …

}

Internally, this is
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A Model for Solving Problems

Yep
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bool containsCat(Picture P) {

    // … do something …

}



  

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(possibly
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(accept)
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bool isBipartite(Graph G) {

    // … do something …

}



  

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(possibly
encoded)

(accept)

(reject)

bool isVertexCover(Graph G, Set C) {

    // … do something …

}

How does this
match our model?



  

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(possibly
encoded)

(accept)

(reject)

bool matchesRegex(string w, Regex R) {

    // … do something …

}

How does this
match our model?



  

Encoding Groups of Objects
● Given a group of objects Obj₁, Obj₂, …, Objₙ, 

we can create a single string encoding all 
these objects.
● Intuition 1: Think of it like a .zip file, but 

without the compression.
● Intuition 2: Think of it like a tuple or struct.

● We'll denote the encoding of all of these 
objects as a single string by ⟨Obj₁, …, Objₙ⟩.



  

Encoding Groups of Objects
● We can now talk about languages like 

these:
● { ⟨R, w⟩ | R is a regex and R matches w }
● { ⟨G, s, t⟩ | G is a graph, s and t are nodes

                  in G, and there’s a path from s
                  to t }

● Our languages are starting to look a lot 
more like problems in the traditional sense 
than sets of strings.



  

A Model for Solving Problems
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Nah
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multiple
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bool matchesRegex(string w, Regex R) {

    // … do something …

}
These form one
large bitstring.
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What problems can we solve with a computer?



  

Time-Out for Announcements!



  

Second Midterm Graded
● The second midterm has been graded.

● Graded are available on Gradescope.
● Solutions, statistics, and common errors are posted 

on the course website.
● Want to chat with a member of the course staff 

one-on-one about the exam and what to do 
moving forward? Please reach out to Kaia!

● Regrade requests for the second midterm open 
Tuesday at 6 PM and close Monday the 24th at 
6 PM Pacific. See announcement on Ed for 
regrade request requirements.



  

0 – 5 6 – 10 11 – 15 16 – 20 21 – 25 26 – 30 31 – 35 36 – 40

Second Midterm Graded

80th Percentile: 33 / 40 (83%)
60th Percentile: 30 / 40 (75%)
40th Percentile: 26 / 40 (65%)
20th Percentile: 21 / 40 (53%)



  

Problem Set Logistics
● PS7 solutions are now available on the course 

website.
● We’ll aim to finish grading by Sunday.

● PS8 comes due this Sunday at 1:00PM.
● Please take a late day if needed. No need to save up 

late days if you have multiple remaining.
● PS9 will go out Friday, as usual, and come due 

the Friday after break. That will be our final pset.
● Have questions? Come talk to us in office hours, 

or post online on Ed!



  

Back to CS103!



  

Emergent Properties



  

Emergent Properties
● An emergent property of a system is a property 

that arises out of smaller pieces that doesn't 
seem to exist in any of the individual pieces.

● Examples:
● Individual neurons work by firing in response to 

particular combinations of inputs. Somehow, this 
leads to consciousness, love, and ennui.

● Individual atoms obey the laws of quantum mechanics 
and just interact with other atoms. Somehow, it's 
possible to combine them together to make iPhones 
and pumpkin pie.

● If this definition seems fuzzy, it’s because it is. 😃



  

Emergent Properties
● Computational devices (TMs and other equivalent devices) 

have two surprising emergent properties:
● Universality: There is a single computing device capable of 

performing any computation.
● Self-Reference: Computing devices can ask questions about 

their own behavior.
● These properties are, in a sense, inherent to all computing 

devices. Computing can’t exist without them.
● These properties are interesting in their own rights – and 

are the theoretical basis for much of modern computing.
● They also are an “Achilles’ heel” of computational devices, 

and we’ll use them to find concrete examples of problems 
computers can’t solve.



  

Emergent Properties
Computational devices (TMs and other equivalent devices) 
have two surprising emergent properties:
● Universality: There is a single computing device capable of 

performing any computation.
Self-Reference: Computing devices can ask questions about 
their own behavior.

These properties are, in a sense, inherent to all computing 
devices. Computing can’t exist without them.
These properties are interesting in their own rights – and 
are the theoretical basis for much of modern computing.
They also are an “Achilles’ heel” of computational devices, 
and we’ll use them to find concrete examples of problems 
computers can’t solve.



  

Universal Machines



  

An Observation
● Think about how you interact with your physical 

computer.
● You have a single, physical computer.
● That computer then runs multiple programs.

● Contrast that with how we’ve worked with TMs.
● We have a TM for { anbn | n ∈ ℕ }. That TM will always 

perform that calculation and never do anything else.
● We have a TM for the hailstone sequence. That TM can’t 

compose poetry, write music, etc.
● How do we reconcile this difference?



  

Can we make a “reprogrammable
Turing machine?”



   

A TM Simulator
● It is possible to program a TM simulator on an unbounded-

memory computer.
● You’ve seen this in class, and you’ll use one on PS8.

● We could imagine it as a method
  bool simulateTM(TM M, string w)

with the following behavior:
● If M accepts w, then simulateTM(M, w) returns true.
● If M rejects w, then simulateTM(M, w) returns false.
● If M loops on w, then simulateTM(M, w) loops infinitely.

true!

false!
 

simulateTM

(loop)

...input...w

M

 

 Auk:
   Move Left
   Write 'k'
   Goto Moa
   …



    

A TM Simulator
● Anything that can be done with an  

unbounded-memory computer can be done  
with a TM.

simulateTM

true!

false!

(loop)

...input...

M

w

 

 Auk:
   Move Left
   Write 'k'
   Goto Moa
   …



    

A TM Simulator

● So there must be some TM that has the
behavior of                 . simulateTM  

simulateTM

true!

false!

(loop)

...input...

M

w

 

 Auk:
   Move Left
   Write 'k'
   Goto Moa
   …

● Anything that can be done with an  
unbounded-memory computer can be done  
with a TM.



    

A TM Simulator

● What would that TM do?

simulateTM

true!

false!

(loop)

...input...

M

w

 

 Auk:
   Move Left
   Write 'k'
   Goto Moa
   …

● So there must be some TM that has the
behavior of                 . simulateTM  

● Anything that can be done with an  
unbounded-memory computer can be done  
with a TM.



   

 

 Tern:
   If Blank Goto Heron
   Write 'q'
   Move Right
   …

 

A TM Simulator

accept!

reject!

(loop)

...input...

M

w
TM that runs 

other TMs

 

 Auk:
   Move Left
   Write 'k'
   Goto Moa
   …

● What would that TM do?

● So there must be some TM that has the
behavior of                 . simulateTM  

● Anything that can be done with an  
unbounded-memory computer can be done  
with a TM.



   

 

 Tern:
   If Blank Goto Heron
   Write 'q'
   Move Right
   …

 

A TM Simulator

...input...

M

w Universal TM

 

 Auk:
   Move Left
   Write 'k'
   Goto Moa
   …

accept!

reject!

(loop)

● What would that TM do?

● So there must be some TM that has the
behavior of                 . simulateTM  

● Anything that can be done with an  
unbounded-memory computer can be done  
with a TM.



    

The Universal Turing Machine
● Theorem (Turing, 1936): There is a Turing machine UT called the 

universal Turing machine that, when run on an input of the form 
⟨M, w⟩, where M is a Turing machine and w is a string, simulates M 
running on w and does whatever M does on w (accepts, rejects, or loops).

● The observable behavior of U TM is the following:
● If M accepts w, then UTM accepts ⟨M, w⟩.
● If M rejects w, then UTM rejects ⟨M, w⟩.
● If M loops on w, then UTM loops on ⟨M, w⟩.

 

 Tern:
   If Blank Goto Heron
   Write 'q'
   Move Right
   …

TM

...input...

M

w Universal TM

 

 Auk:
   Move Left
   Write 'k'
   Goto Moa
   …

accept!

reject!

(loop)

UTM does to ⟨M, w⟩
 

what
 

M does to w.



  

The Universal Turing Machine
● Intuition: Modern computers – laptops, 

phones, network routers, etc. – are universal 
Turing machines.
● Each computer is a single piece of hardware. With 

rare exceptions, we don’t make specific changes to 
the hardware after we purchase the computer.

● We load programs into those computers, and those 
computers then execute the commands in those 
programs.

● Turing came up with this idea in 1936 – before 
any programmable computers had been built!



  

The Universal Turing Machine
● Building out UTM is nontrivial, but the conceptual idea behind it 

isn’t too bad.
● Essentially:

● UTM splits its tape into two regions: one spot holding the source code 
of the TM to simulate, and one holding the tape contents for that TM.

● UTM somehow marks where in the simulated TM’s tape the simulated 
TM’s tape head is, perhaps by having a special symbol indicating 
“tape head here.”

● UTM repeatedly consults the source code of the simulated TM to 
determine what action to take, then simulates that action.

● If the simulated TM accepts or rejects, then UTM also accepts or 
rejects.

… W r i t e ' x ' … a b b a …
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The Universal Turing Machine
● Amazing Thought: UTM is the most powerful 

computational device that can be built.
● Assuming the Church-Turing thesis, any 

computation that can be performed by any 
computing system can be performed by a TM.

● The universal TM can “run” any TM, so it can 
perform any computation any TM can perform.

● So UTM can do any computation that could ever be 
done by any possible feasible computing system. 
(Wow!)

● And yet – it’s just a simulator! All it does is simulate 
one step of a TM after another.



  

UTM as a Recognizer
● UTM, when run on a string ⟨M, w⟩, where M is a

TM and w is a string, will
…   accept ⟨M, w⟩ if M accepts w,
…   reject ⟨M, w⟩ if M rejects w, and 
…   loop on ⟨M, w⟩ if M loops on w.

● Although we didn’t design UTM as a recognizer, it 
does recognize some language.

● Which language is that?
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universal TM UTM. This means that

∀x ∈ Σ*. (UTM accepts x  ↔  x ∈ ATM)
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UTM as a Recognizer
● UTM, when run on a string ⟨M, w⟩, where M is a

TM and w is a string, will
…   accept ⟨M, w⟩ if M accepts w,
…   reject ⟨M, w⟩ if M rejects w, and 
…   loop on ⟨M, w⟩ if M loops on w.

● Let’s let ATM be the language recognized by the
universal TM UTM. This means that

∀M. ∀w ∈ Σ*. (M accepts w  ↔  ⟨M, w⟩ ∈ ATM)
● So we have

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }



  

The Language ATM

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }
● Here’s a complicated expression. Can you 

simplify it?
⟨UTM, ⟨N, x⟩⟩ ∈ ATM.

● Given the definition of ATM and UTM, the following 
statements are all equivalent to one another.
● M accepts w.
● UTM accepts ⟨M, w⟩.
● ⟨M, w⟩ ∈ ATM.

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev
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Uh… so what?



  

Reason 1: It has practical consequences.



  

Why Does This Matter?
● The existence of a universal Turing machine has both 

theoretical and practical significance.
● For a practical example, let's review this diagram from 

before.
● Previously we replaced the computer with a TM. (This 

gave us the universal TM.)
● What happens if we replace the TM with a computer 

program?

 

true!

false!
 

simulateTM

(loop)

M

...input...w

 

 Auk:
   Move Left
   Write 'k'
   Goto Moa
   …
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● For a practical example, let's review this diagram from 

before.
● Previously we replaced the computer with a TM. (This 

gave us the universal TM.)
● What happens if we replace the TM with a computer 

program?

 

true!

false!
 

simulateProgram

(loop)

...input...w

for (int i = 2;
    i < n; i++) {
   if (n % i == 0)
     …
}

code



   

true!

false!
 

simulateProgram

(loop)

...input...w

for (int i = 2;
    i < n; i++) {
   if (n % i == 0)
     …
}

code

● We now have a computer program that runs other computer 
programs!
● An interpreter is a program that simulates other programs. Python 

programs are usually executed by interpreters. Your web browser 
interprets JavaScript code when it visits websites.

● A virtual machine is a program that simulates an entire operating 
system. Virtual machines are used in computer security, cloud 
computing, and even by individual end users.

● It’s not a coincidence that this is possible – Turing’s 1936 paper 
says that any general-purpose computing system must be able to 
do this!

Why Does This Matter?



  

Reason 2: It’s philosophically interesting.



  

Can Computers Think?
● On May 15, 1951, Alan Turing delivered 

a radio lecture on the BBC on the 
topic of whether computers can think.

● He had the following to say about 
whether a computer can be thought of as 
an electric brain...

https://turingarchive.kings.cam.ac.uk/publications-lectures-and-talks-amtb/amt-b-5


  

“In fact I think [computers] could be used in such a manner that they could be 
appropriately described as brains. I should also say that

‘If any machine can be appropriately described as a brain,
then any digital computer can be so described.’

This last statement needs some explanation. It may appear rather startling, 
but with some reservations it appears to be an inescapable fact.

It can be shown to follow from a characteristic property of digital computers, 
which I will call their universality. A digital computer is a universal machine 
in the sense that it can be made to replace any machine of a certain very wide 
class. It will not replace a bulldozer or a steam-engine or a telescope, but it 
will replace any rival design of calculating machine, that is to say any machine 
into which one can feed data and which will later print out results. In order to 
arrange for our computer to imitate a given machine it is only necessary to 
programme the the computer to calculate what the machine in question would 
do under given circumstances, and in particular what answers it would print 
out. The computer can then be made to print out the same answers.

If now some machine can be described as a brain we have only to programme 
our digital computer to imitate it and it will also be a brain.”



  

Self-Referential Software



  

Quines
● A Quine is a program that, when run, 

prints its own source code.
● Quines aren't allowed to just read the file 

containing their source code and print it 
out; that's cheating (and technically 
incorrect if someone changes that file!)

● How would you write such a program?



  

Writing a Quine



  

Self-Referential Programs
● The fact that we can write Quines is not a 

coincidence.
Theorem: It is possible to construct

TMs that perform arbitrary computations 
on their own source code.

● In other words, any computing system 
that’s equal to a Turing machine possesses 
some mechanism for self-reference!

● Want to see how deep the rabbit hole goes? 
Take CS154!



  

Self-Referential Programs
● Claim: Going forward, assume that any function has 

the ability to get access to its own source code.
● This means we can write programs like the ones 

shown here:

bool narcissist(string input) {
    string me = /* source code of narcissist */;

    return input == me;
}

bool acceptLongerStrings(string input) {
    string me = /* source code of acceptLongerStrings */;
 
    return input.length() > me.length();
}



  

Next Time
● Self-Defeating Objects

● Objects “too powerful” to exist.
● Undecidable Problems

● Problems truly beyond the limits of 
algorithmic problem-solving!

● Consequences of Undecidability
● Why does any of this matter outside of 

Theoryland?


